
AVOUM: Account-View-on-UTXO-Model
A whitepaper by Mutual Knowledge Systems, November 2022

https://bit.ly/AVOUM2022

contact@mukn.com

We design and propose to implement a technique whereby users may interact with DApps using
the convenient Account/Balance model made popular by Ethereum on top of a
smart-contract-capable Blockchain that uses the more robust but more rigid UTXO model, like
Bitcoin Cash, Cardano, or Nervos. The two main issues we solve are:

1. “Open” contracts with an unlimited number of participants or transactions can be subject
to economic DoS attacks whereby sophisticated attackers can modify the contract’s
UTXO faster than the victims can react, thus blocking them from interacting with it. By
making these transactions suitably malleable, intermediaries (at equilibrium, nodes) can
compete to get the transactions accepted by the blockchain in exchange for a fee.

2. Writing UTXO unlocking scripts wherein transactions are suitably malleable enables
users to interact with contracts as if the blockchain were using an Account/Balance
model; but applying the design pattern by hand requires a great discipline and the result
may or may not be recognized by the transaction posting intermediaries (nodes). Our
solution is to automate this discipline away using a suitable Plutus library.

Our solution will enable the safe deployment of “open” contracts on UTXO blockchains, which is
not currently possible, and will bring its smart contract capabilities in parity with Ethereum.

Intended Audience:
Members of the Governance for Blockchains providing covenant or smart contract
capabilities on top of the UTXO model.

Introduction 2
An Auction gone wrong 2
A Market for Open-Contract Transactions is Inevitable 2
Our Approach 4

Background Concepts 4
UTXO Model vs Account/Balance Model 4
FOMO3D and the Dark Forest 5
The Implicit Auction for Blockchain Space 6
Node Extractable Value 7

What we have done so far 8
Bibliography 8

https://mukn.com/
https://bit.ly/AVOUM2022
mailto:contact@mukn.com


Introduction

An Auction gone wrong
Let’s imagine that Alice wants to sell a painting by her famous deceased father in an online
auction. She chooses to do it through a contract on a blockchain that uses the UTXO model.
The painting is worth about one million dollars, which is what the highest bidder, Bob, is ready to
offer. Bob signs a transaction to purchase the painting, and waits… but instead the painting
ends up being awarded to Mallory, who only paid Alice a few cents for it! What happened?

To interact with the auction contract, Bob’s transaction had to refer to its current state, embodied
in a UTXO. But what if some other user also posted a bid, that appeared before Bob’s? The bid
might be less than Bob’s, but because it appeared before Bob’s, it interacted with the contract,
consuming its previous UTXO and generating a new UTXO that accounts for that new bid. Bob’s
transaction, referring to the old UTXO, is therefore invalid, and Bob has to sign a new
transaction and wait for it to be either confirmed or rejected. But what if yet another bidder
managed to get their bid in before Bob’s? Then Bob must try again, in an endlessly repeated
cycle, until the end of the auction arrives and his bid never made it through.

What did Mallory do? She sent to the blockchain nodes a stream of transactions making bids for
one cent, two cents, three cents, etc., such that the UTXO constantly changes, and changes
faster than Bob or any other honest but technically unsophisticated bidder can react. Regular
users wait for a couple of blocks each time to determine what the UTXO to sign a transaction
against will be, but Mallory makes multiple transactions at every block, and even maintains
multiple rival states of the contract so the odds that honest bidder write their transactions
against a valid UTXO are very low. Mallory also watches how much Bob put down in transaction
fees, and makes sure to always leave a larger tip to the nodes, so she’ll be sure that they prefer
her transaction to Bob’s. In the end, Mallory racks up a very large bill in transaction fees:
thousands of dollars worth of node tips, maybe much more, along the duration of the auction.
But in the end, she manages to keep out all the other bidders, and win the auction with a
ridiculously low bid. For a few thousand dollars in fees, she wins a million dollar worth asset.

Mallory can similarly run a Economic Denial-of-Service Attack (Economic DoS) to exclude rivals
from any contract where she could benefit from this exclusion.

A Market for Open-Contract Transactions is Inevitable
Any “open” contract on a UTXO blockchain can be subject to the same Economic DoS: if
anyone can interact with the contract, or if an existing participant can interact with it an indefinite
number of times before others may react, then a sophisticated attacker can use the same



technique as described above to effectively prevent any other unsophisticated participant from
interacting with the contract until after it is too late.

Even without an intentional attacker, the UTXO for heavily-used contracts will be subject to
heavy contention and frequent change, such that regular non-technical users will have trouble
interacting with it. They have to watch the blockchain, determine the UTXO for the contract, sign
a transaction with this UTXO, wait for this transaction to either make it through or be invalidated
by a rival transaction, then sign a new transaction and try again, repeating for hours on, hoping
that at some point there will be a lull in the activity of that contract and their transaction will
finally make it through.

Does that mean that open contracts on UTXO blockchains are forever reserved for use by
sophisticated participants who can run a full node, watch the blockchain at high-speed, and race
rival transactions in all of multiple possible worlds at the same time, in servers close enough to
the nodes to matter?

Actually, no: someone sophisticated has to do this job. But if the open contract is properly
structured, then this someone can be any participant in a transaction posting auction market.
Then, the economically competent but technically unsophisticated user posts only have to pay a
sufficient transaction fee, and the sophisticated professionals will compete with each other to be
the one who effectively posts the transaction.

A single sophisticated professional — offering his services to ensure that users’ transactions get
through in a timely fashion to interact with frequently changing contracts — would likely be
enough to start this market. Posting a transaction then becomes fire-and-forget for regular
users, and the professional will earn high fees for consistently winning the race to the UTXO.
High fees will likely attract competition, until a market emerges where sophisticated users
compete to earn fees from users, driving those fees down, and flooding the network with rival
transactions.

Eventually, nodes would realize that they could cut out the middleman between end-users and
the blockchain by running those servers directly on their mining rigs, saving a lot in fees and
network traffic for everyone.

In the end, when the market finally reached its equilibrium, users would interact with open
contracts by posting suitably malleable transactions to the blockchain, and trust that nodes
would automatically substitute the most recent contract UTXO for the one they posted, thereby
having the blockchain behave exactly as if it had an Account/Balance model.

To be absolutely precise, an account-based contract may also have an ever changing state, and
users may have to compete to have their transactions completed in the current state.
Transactions that are not completed in the intended current state may become invalid.
Therefore, we aim at making AVOUM even better than an Account/Balance model in the end.



Our Approach
We propose to directly implement the final equilibrium state of this process, wherein nodes
implement the Account/Balance view of open contract on top of the underlying UTXO model,
thereby providing the best of both worlds. Short-circuiting this market evolution allows us to
simplify away any intermediate API, and go straight to a simplified version that only requires
additional processing by the nodes, with no additional API.

We thus propose to implement to any UTxO blockchain:
1. A convention for contracts to accept signed malleable transactions that do not depend

on the specific UTXO of the contract, with a Plutus library to implement the convention,
2. An algorithm for nodes to recognize the convention, detect what validity conditions

exactly a signed transaction does or does not depend on, and automatically re-run an
updated transaction with a modified contract UTXO when appropriate.

3. An optimization heuristic for nodes to optimize their earnings based on the available pool
of potential transactions.

Background Concepts

UTXO Model vs Account/Balance Model
A UTXO blockchain, like Bitcoin, represents available assets as UTXO, which stands for
Unspent Transaction Outputs: each transaction may take as inputs some UTXOs of previous
transactions (which are therefrom spent and no longer UTXOs) and itself produces UTXOs,
thereby transferring the assets from previous owners to new ones. Ownership is enforced by the
“locking script” associated with each UTXO, that ensures that only the possessors of some
cryptographic keys may spend the UTXO, either freely or according to some “covenant” that
limits their ability.

By contrast, the first blockchain with the ability to write smart contracts, Ethereum, uses an
Account/Balance model, transactions transfer assets between accounts that persist across
transactions, by modifying their balances. Some accounts are simply controlled by
cryptographic keys, while more elaborate accounts are controlled by “smart contracts” which are
scripts written in the blockchain’s virtual machine.

UTXOs make it easy for participating network nodes to verify historical transactions, in
parallel—whereas the Account/Balance model, at least in its naive implementation, makes
playing or replaying historical transactions an essentially sequential activity.

To nuance this, though from some points of view, the situation is actually the opposite: for
example, let’s imagine a case on the Cardano blockchain… if we have a single utxo having 3
ADAs and 3 different people want to get 1 ADA each from this UTxO, they will have to submit
one transaction after the other. The first transaction will create a new UTxO with 2 ADAs. The



second transaction will spend that and create a new one with 1 ADA. And so on... (This is a
variant of the inconvenient problem described in the previous sections.) Whereas, if we had an
account with 3 ADAs, the 3 different users could submit transactions to get their 1 ADAs
simultaneously and, as long as the transactions have different nonces to avoid replay, the
transactions could be executed in parallel. Which AVOUM is also built taking into account the
distinction between verifying old and new transactions.

Joining the network and validating its state can therefore be done faster with UTXOs than with
Account/Balance, for the same reason. UTXOs provide an all over more robust data model.

On the other hand, the Account/Balance model makes it much easier to interact with “open”
contracts involving a lot of participants: a user can “just” sign a transaction that describes the
action they want to take, and this transaction will be valid irrespective of the state of the contract
when the action is taken. By contrast, with the UTXO model, the user would have to track down
exactly the state of contract (its UTXO) at the time the action is to be performed to even prepare
the correct transaction; but this state could change very quickly, which opens the contract users
to the Economic Denial-of-Service Attack described above.

FOMO3D and the Dark Forest
Economic Denial-of-Service Attacks are not mere speculation. And they are not just for UTXO
blockchains. Indeed, they already happen, all the time, on the Ethereum blockchain, that uses
the Account/Balance model! The most famous stories about it are the winning of the FOMO3D
tontine, and the Dark Forest of front-runners for swap contracts.

The FOMO3D was a joke of a contract, a blockchain variant of a tontine. In a historical tontine,
many participants, usually young people, put money in a pot, or left it to a careful money
manager—until all the participants died but one, who then got all the money in the pot. In times
and places when life expectancy was shorter than the modern world, the lone survivor might
even still be young enough to actually enjoy his fortune. To adapt the concept of tontine to the
blockchain, a simple mechanism was used to detect the last man standing (or then again last
robot operating): anyone could add tokens to the pot at any time (above some floor contribution)
and thereby become a participant; to take the tokens out, you just had to be the last one putting
tokens in, with no one else having put in any tokens for the last 24 hours. Of course, some rival
people were running robots to prevent anyone else from winning, by making sure to chip in a
few tokens after 23 hours and 55 minutes or so, if needed. And yet, some clever person
managed to steal the then million-dollar pot while rival robots were still operating. How did he
do? By running an Economic Denial-of-Service Attack: he simply put money in the pot, waited
for about 23 hours and 55 minutes, and then bought the entire Ethereum blockchain for 5
minutes until his rivals had been excluded long enough for him to take the money out. How did
he buy the entire blockchain? With repeat copies of a transaction that paid for the entire block
gas limit at a gas price advantageous to the nodes, until the 5 minutes had passed.



In the Dark Forest story, also on Ethereum, a person noticed a way that anyone can take tokens
out of a misconstrued ERC20 token contract with a clever swap transaction. A good actor, he
decided to take the tokens out before they disappear, and safeguard them for their original
owners. But there are robots out there that watch all ERC20 contracts for any advantageous
swap transaction and will front-run that transaction with a rival transaction executing the same
swap, but to the advantage of the robot operator rather than the original arbitrageur. To make
sure the rival transaction makes it in, the robot simply puts a larger gas price, as long as there is
any profit in the swap large enough to justify the gas cost. And our good actor was thereby
scooped by a robot, and concluded that Ethereum is a Dark Forest where you’ll easily get
mugged.

The Implicit Auction for Blockchain Space
Thus, Economic Denial-of-Service Attacks already exist, and so even on Account/Balance
blockchains. At the bottom of the issue, the underlying reality is that space on the blockchain is
scarce. Whether limited explicitly through a conventional block size limit, a conventional gas
limit, or just implicitly via the network bandwidth of the winning nodes, there is a limit on how
many transactions can make it to any given block. From an economic point of view, that means
that getting a transaction into a block is winning an auction.

Therefore, the first issue, demonstrated by the FOMO3D story, is that of technical sophistication.
When one participant knows how to play the transaction-posting auction correctly, when the
other participants are too inept to even realize the game they’re playing,
more technically sophisticated than others, they the sophisticated participant can run circles
around the other ones and prevent them from ever getting their transactions to the blockchain,
then causing their rivals to timeout and extracting any resulting value from the smart contract.

In the case of racing a UTXO, our solution above makes the same sophistication available to
every participant, for a fee. Sophisticated professionals, typically nodes, handle the complexity
for regular users, and the technical problem has been reduced down to the underlying economic
problem. In the case of the FOMO3D story above, the economic problem was hidden under a
very thin layer of technical sophistication. In both cases, the auction for blockchain space,
previously left implicit, was made explicit: to get your transaction in, you need to bid a higher fee
than your rivals—which shouldn’t be a big problem if you’re playing a positive sum game while
they’re playing a zero-sum game.

Now, the auction for blockchain space is a first price auction, since a second price auction would
be gameable by nodes. Thus, to win an auction and get their transactions in, the participants
must remain active, monitor the blockchain, and carefully increase their bid with market
conditions, alongside their rivals; otherwise they’ll pay too much (if they reveal their actual
maximum bid too early), or they’ll fail to get in (if they fail to raise the price to their maximum
bid). There is still some sophistication required on the side of the participant: not technical
sophistication, but economic sophistication. Posting transactions is still not fire-and-forget: users
must keep watching the blockchain, check whether their transaction went through, and if not,



sign a new variant of the transaction with a higher fee and watch again (and be ready to be
surprised in case their old transaction made it through after all). This matters a lot whenever
there is a deadline to sending transactions, which is almost always the case when writing robots
that automate participation to some DApps.

To go back to our illustrating example, the FOMO3D story, “all” the tontine-participating robots
had to do to keep playing their chicken game was to match and slightly outbid the fees posted
by the attacker for one block. Indeed, to win the pot, the attacker had to win the auction for each
and every block for the entire duration of the attack, whereas the defenders would only have
had to win one single block. Since there were about 20 blocks in those five minutes, they could
have let him buy fifteen entire blocks before they outbid him, making it a dear lesson no
would-be attacker would forget. Defending successfully would have been an order of magnitude
less costly than the attack. It would have been yet another order of magnitude less costly if they
had started their transactions an hour in advance rather than waited until just five minutes
before the deadline. Or if the blockchain had had ten times as much throughput. In general,
defenders against Economic DoS attacks are at an advantage and attackers are at a
disadvantage—but only if they play the game correctly. With economically rational and
technically correct robots, the attacker would stand no chance. But that in itself is the topic for a
separate project.

Node Extractable Value
The second issue, demonstrated by the “Dark Forest” story, is that in a sophisticated-enough
market, the nodes will extract the value that is theirs. And this value comprises the fees that a
transaction is worth paying for, as well as any profit that can be made by rewriting malleable
transactions to their profit. This includes changing the name of the beneficiary of a
single-transaction arbitrage—a zero-sum game where the user loses—as well as inserting the
latest UTXO in a transaction to extract a fee—a positive-sum game where the user wins. In
doing so, they are not being evil in one case and good in the other, they are just playing the
game competently, as designed.

Super-competent nodes might even loosely collude with each other to squeeze higher
transaction fees from users who fail to tip their transactions sufficiently when they have a short
deadline. This collusion in practice will be counterbalanced by the interest of the node to defect
from the cartel and accept the lower fee for themselves, rather than help another node collect
the higher fee. But the more concentrated the mining power, the more the nodes should
cooperate to raise fees. However, this is speculation for a distant future.

Our present project is to build the engine for nodes to play the positive-sum game where nodes
and users win as the users’ transactions get posted.



What we have done so far
After having been quoted as a promising project by Charles Hoskinson, AVOUM has earned a
grant from the Cardano Catalyst Fund: a feasibility study has been conducted.

We have also ported AVOUM to the Nervos blockchain.

Bibliography
“Ethereum is a Dark Forest”, Dan Robinson and Georgios Konstantopoulos, August 2020,
https://medium.com/@danrobinson/ethereum-is-a-dark-forest-ecc5f0505dff

“Flash Boys 2.0: Frontrunning, Transaction Reordering, and Consensus Instability in
Decentralized Exchanges”, Daian et al., April 2019, https://arxiv.org/pdf/1904.05234.pdf

“Why Developing for the Blockchain is Hard — Part 1: Posting Transactions”, François-René
Rideau, December 2018,
https://hackernoon.com/why-developing-for-the-blockchain-is-hard-part-1-posting-transactions-d
de21c025c65

“How the winner got Fomo3D prize — A Detailed Explanation”, SECBIT Labs, August 2018,
https://medium.com/coinmonks/how-the-winner-got-fomo3d-prize-a-detailed-explanation-b30a6
9b7813f

“Chimeric Ledgers: Translating and Unifying UTXO-based and Account-based
Cryptocurrencies”, Joachim Zahnentferner, March 2018,
https://iohk.io/en/research/library/papers/chimeric-ledgerstranslating-and-unifying-utxo-based-an
d-account-based-cryptocurrencies/

https://medium.com/flashbots/flashbots-transparency-report-february-2021-8ac45b467d0a

https://github.com/MuKnIO/avoum-cardano-feasibility-study
https://www.nervos.org/blog/mukn-new-smart-contract-capabilities-to-nervos
https://medium.com/@danrobinson/ethereum-is-a-dark-forest-ecc5f0505dff
https://arxiv.org/pdf/1904.05234.pdf
https://hackernoon.com/why-developing-for-the-blockchain-is-hard-part-1-posting-transactions-dde21c025c65
https://hackernoon.com/why-developing-for-the-blockchain-is-hard-part-1-posting-transactions-dde21c025c65
https://medium.com/coinmonks/how-the-winner-got-fomo3d-prize-a-detailed-explanation-b30a69b7813f
https://medium.com/coinmonks/how-the-winner-got-fomo3d-prize-a-detailed-explanation-b30a69b7813f
https://iohk.io/en/research/library/papers/chimeric-ledgerstranslating-and-unifying-utxo-based-and-account-based-cryptocurrencies/
https://iohk.io/en/research/library/papers/chimeric-ledgerstranslating-and-unifying-utxo-based-and-account-based-cryptocurrencies/
https://medium.com/flashbots/flashbots-transparency-report-february-2021-8ac45b467d0a

